
 1 / 99

Cheating With Optimiser
Statistics In SAP ASE - v2.1

Raymond Mardle

 2 / 99

Introduction

 A bit about myself
 How optimiser statistics might be generated
 Tools for analysis
 Customisation procedure
 Other ways of cheating
 Where to find the procedures

 3 / 99

Who Is Raymond Mardle?

 I am a relational database specialist
 Apart for two years (2006 and 2007 when I was

also using Oracle) I have exclusively used SAP
(previously Sybase) products since 1997
 mainly Adaptive Server Enterprise (ASE)
 I have various levels of expertise of other SAP

products (e.g. Replication Server and IQ)
● whilst working for Sybase in Australia, I

became their Asia / Pacific IQ expert

 4 / 99

Who Is Raymond Mardle? (cont)

 I first used Sybase SQL Server 4.9 as a developer in
1989 and then moved into a DBA role (for both
Sybase and Oracle) in 1993

 I moved to the Southern Hemisphere in May 1997
to work for ACC in Wellington, New Zealand

 I started working for Sybase Australia in their
Melbourne office in August 1998 as a consultant,
until the 'great purge' in August 2002

 I moved back to the UK / EU in December 2002

 5 / 99

Who Is Raymond Mardle? (cont)

 I am a Certified Sybase Professional and a Certified
Sybase Instructor

 I have written several DBA and developer level
courses from scratch, and delivered them to
employees in-house at two firms I have worked at

 I was the author of the first IQ Quick Reference
Guide

 6 / 99

Who Is Raymond Mardle? (cont)

 Whilst in a previous employment, I had two articles
published in the ISUG Journal
 Q2 2005 : Surviving Multiple Simultaneous

Threshold Firings
 Q3 2006 : Massaging Statistics in Heterogeneous

ASE Environments
● which was the start point for some of this

presentation's content

 7 / 99

Simplistic Housekeeping Model

 During a convenient housekeeping window, DBA
level jobs run using a single connection to
 update index statistics for all tables
 in any time that remains, drop and re-create

clustered indexes (or create a dummy CI and
then drop it), or use "reorg rebuild" if databases
can be dumped afterwards, to defragment and
reclaim space (shrink tables)

● which also rebuilds any non-clustered indexes
on the table

 8 / 99

Simplistic Housekeeping Model
(cont)

 Having as up-to-date as possible statistics is
probably more important than having tables as
small as they can be – up to the point where the
optimiser decides the table is too fragmented and
decides to create a new, but usually bad, plan
 so updating statistics should probably be left to

complete, if possible, before performing other
housekeeping tasks

 9 / 99

Sophisticated Model

 Integrate table shrinkage and stats updating
 after a table has been shrunk, update the

statistics for all indexed columns for the table,
except the ones that are first in any index

 Use multiple connections so that
 after the shrinking, more than one column at a

time has its stats updated for the shrunk table
 At the end, update the stats for indexed columns in

tables that were not shrunk

 10 / 99

Sophisticated Model -
Considerations

 There is enough cache available to support more
than one column (possibly from different tables) at
a time having its stats updating

 There is enough space in the temporary database
that the DBA level user uses to allow sorting for
several non-leading columns at a time

 11 / 99

Shortcomings Of Any Method

 Customised statistics updating commands may be
required for certain columns and / or tables, due to
 different steps being required
 sampling being needed

 This can be complicated if many servers and / or
databases are being administered

 It could take a while for a DBA to react to new
requirements
 during which time the stats may be sub-optimal

 12 / 99

Partitioned Tables

 Each partition has a random ID similar to an object ID
 As new partitions are added, the new partition IDs will

increase randomly if possible
 If not possible to increase, the new IDs will be lower

randomly than existing IDs, so that the IDs are not in
partition creation order

 SAP supplied system procedures and utilities output
in partition ID order, so they can be out of sequence

 The system procedures discussed in this file can / will
output in partition creation order

 13 / 99

Tools Available To Analyse Stats

 optdiag (SAP supplied)
 sp_showoptstats (SAP supplied)
 sp__optdiag (originally written by Kevin Sherlock

and amended by me)
 sp_rpm_summ_stats (written be me)

 14 / 99

optdiag

 SAP supply optdiag
 It is a command line utility that outputs all index

information, and stats related information for
 all tables in a specific database
 a specific table in a specific database
 or a specific column in a specific table in a

specific database

 15 / 99

optdiag (cont)

 The executable is initially found in the ASE software
directory / folder structure

 The optdiag version has to match the version of
ASE that the executable was created for

 It has to be run by a login with sa_role

 16 / 99

optdiag (cont)

 It produces a lot of output
 which may be far more than is required to, say,

find out the last update date and time
 Prior to ASE 16.0, it cannot handle bigtime, bigdate

or bigdatetime columns
 tested in ASE 15.5 EBF 18158 SMP ESD#2 and

ASE 15.7 EBF 21338 SMP SP101 on Windows
 It was broken in ASE 16.0 SP03 PL02 on RHEL 7.4

when the default BASH shell language was used

 17 / 99

sp_showoptstats

 SAP supply sp_showoptstats
 It was originally "written" using version 15.0 of

Kevin Sherlock's sp__optdiag (that is two
underscores) as the template
 none of the bugs in that version were fixed in

the "conversion"
 it took until ASE 16.0 SP03 to fix the bugs

 It only outputs the information in XML

 18 / 99

sp_showoptstats (cont)

 As of ASE 16, the XML is built up in a text object
 It usually takes two executions to output the XML

 the first execution usually fails because the text
cannot be output due to textsize being too small

 The XML then has to be run through a parser to
allow the statistics to be read

 Has to be run by the table owner or a login with
sa_role

 19 / 99

sp__optdiag

 Kevin Sherlock wrote the system procedure
sp__optdiag
 its output is similar to optdiag's

 Kevin produced a version for ASE 15.0 and a later
version for ASE 16
 The ASE 15.0 had a few bugs

● e.g. looping problems for all tables
 I have not seen Kevin's version for ASE 16.0

 20 / 99

sp__optdiag (cont)

 I took Kevin's version for 15.0 and updated it
 I used that to create a version for ASEs 15.5, 15.7 and

16.0
 the ASE 15.5 and ASE 15.7 versions have not been

updated since March 2018

 21 / 99

sp__optdiag (cont)

 the ASE 16.0 version was last updated last week
● it outputs exactly like optdiag by default
● except for APL round-robin partitioned tables

with a CI and one or more NCIs
➢ might output additional partition names

 All three versions can output partitions in creation
order instead of in partition ID order
 they can also output extra info that I find to be of

use, and can output integer values without
decimal places for ASE 16's version

 22 / 99

sp__optdiag (cont)

 The procedure does not require sa_role to execute it
 It is created using "with execute as owner" by default,

so that statistics functions can be used and statistics
can be flushed as part of its processing

 It has the same granularity as optdiag, but with wild
cards, and it can have a specific column for multiple
tables

 23 / 99

sp__optdiag (cont)

 The procedure can be up to about four times faster
than optdiag

 For a database with the following table summary
(which was created using sp_rpm_tablesize @totals =
"J" in a single engine ASE server), where eight of the
tables each had 75 columns with statistics

 optdiag took 85.25 seconds to create 91,672 lines
 sp__optdiag took 28:353 seconds to create 91,687

lines

 24 / 99

sp__optdiag (cont)

 Supply "?" or "help" as the first parameter for
information on its use and output
 all of the system procedures I write have that

functionality

 25 / 99

sp_rpm_summ_stats

 Sometimes all that is wanted is to know when the
stats for each column in a table were last updated,
and possibly some other information

 As part of the investigations for the Q3 2006 ISUG
journal article, I wrote (and made available to the
Sybase community) a system procedure to
summarise statistics information

 I have updated it for use with ASEs 15.0+
 It is now called sp_rpm_summ_stats

 26 / 99

sp_rpm_summ_stats (cont)

 27 / 99

sp_rpm_summ_stats (cont)

 28 / 99

sp_rpm_summ_stats (cont)

 It has the same granularity levels as sp__optdiag
 You can also restrict by other criteria
 You can change the sort order of the output
 It handles partitioned tables, and can output

partition information in one of several different
ways

 If the simple stats updating method is used, it can
also output the approximate time each column
took to have its stats updated

 29 / 99

sp_rpm_summ_stats (cont)

 Example usage : sp_rpm_summ_stats @serial_us = y
t_name owner rowcnt col ptn C_summ N_summ Edit moddate pos_elap req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- -------- ------
Country dbo 23 cancelled 0 1 2017.09.27 12:25:00 00:00:00 20 1 20 0
Country dbo 23 created 0 1.1 2017.09.27 12:25:00 00:00:00 20 2 20 0
Country dbo 23 id 1.1 0 2017.09.27 12:25:00 00:00:00 20 20 20 0
Country dbo 23 name 1 0 2017.09.27 12:25:00 00:00:00 20 20 20 0
Country dbo 23 r_id 1 0 2017.09.27 12:25:00 00:00:00 20 20 20 0
Country dbo 23 updated 0 1 2017.09.27 12:25:00 00:00:00 20 1 20 0
Customer dbo 142182 c_id 0 1.1 2017.09.27 12:25:15 00:00:03 20 46 20 0
Customer dbo 142182 cancelled 0 1.1 2017.09.27 12:25:22 00:00:04 20 20 20 0
Customer dbo 142182 created 0 1.1 2017.09.27 12:25:25 00:00:00 20 20 20 0
Customer dbo 142182 id 1.1 2 2017.09.27 12:25:25 00:00:00 20 20 20 0
Customer dbo 142182 name 0 1.1 2017.09.27 12:25:17 00:00:02 20 22 20 0
Customer dbo 142182 post_code 0 1.1 2017.09.27 12:25:12 00:00:12 20 50 20 0
Customer dbo 142182 updated 0 1.1 2017.09.27 12:25:23 00:00:01 20 20 20 0
Item dbo 1458982 created 0 1.1 Y 2017.09.11 15:49:37 NULL 20 20 20 0
Item dbo 1458982 id 1.1 0 Y 2017.09.11 15:49:38 00:00:01 20 20 20 0
Item dbo 1458982 l_id 1 0 Y 2017.09.11 15:50:04 00:00:04 20 25 20 0
Item dbo 1458982 m_id 1 0 Y 2017.09.11 15:49:56 00:00:05 20 30 20 0
Item dbo 1458982 name 1 0 Y 2017.09.11 15:49:51 00:00:13 50* 158 20 0
Item dbo 1458982 s_id 1 0 Y 2017.09.11 15:50:00 00:00:04 20 30 20 0
Item dbo 1458982 u_id 1 0 Y 2017.09.11 15:50:09 00:00:05 20 12 20 0
Item dbo 1458982 updated 0 1 Y 2017.09.11 15:50:12 00:00:03 20 20 20 0
Item dbo 1458982 when_cancelled 0 1 Y 2017.09.11 15:50:15 00:00:03 20 20 20 0
Location dbo 30 cancelled 0 1 2017.09.27 12:25:46 00:00:00 20 1 20 0
Location dbo 30 created 0 1.1 2017.09.27 12:25:46 00:00:00 20 2 20 0
Location dbo 30 id 1.1 0 2017.09.27 12:25:46 00:00:00 20 20 20 0
Location dbo 30 position 1 0 2017.09.27 12:25:46 00:00:00 20 20 20 0
Location dbo 30 updated 0 1 2017.09.27 12:25:46 00:00:00 20 1 20 0
Location dbo 30 w_id 1 0 2017.09.27 12:25:46 00:00:00 20 20 20 0

SNIP
(70 rows affected)
(return status = 0)

 30 / 99

sp_rpm_summ_stats (cont)

t_name owner rowcnt col ptn C_summ N_summ Edit moddate pos_elap req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- -------- ------
Country dbo 23 cancelled 0 1 2017.09.27 12:25:00 00:00:00 20 1 20 0
Country dbo 23 created 0 1.1 2017.09.27 12:25:00 00:00:00 20 2 20 0
Country dbo 23 id 1.1 0 2017.09.27 12:25:00 00:00:00 20 20 20 0
Item dbo 1458982 m_id 1 0 Y 2017.09.11 15:49:56 00:00:05 20 30 20 0
Item dbo 1458982 name 1 0 Y 2017.09.11 15:49:51 00:00:13 50* 158 20 0

 Explanation
 @serial_us = y : outputs the possible elapsed time it

took to update the column's stats in serial update
stats mode with one connection

● use t if several "update index statistics {table}"
were running at the same time using multiple
connections, for different tables

 31 / 99

sp_rpm_summ_stats (cont)

t_name owner rowcnt col ptn C_summ N_summ Edit moddate pos_elap req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- -------- ------
Country dbo 23 cancelled 0 1 2017.09.27 12:25:00 00:00:00 20 1 20 0
Country dbo 23 created 0 1.1 2017.09.27 12:25:00 00:00:00 20 2 20 0
Country dbo 23 id 1.1 0 2017.09.27 12:25:00 00:00:00 20 20 20 0
Item dbo 1458982 m_id 1 0 Y 2017.09.11 15:49:56 00:00:05 20 30 20 0
Item dbo 1458982 name 1 0 Y 2017.09.11 15:49:51 00:00:13 50* 158 20 0

 Explanation (cont)
 ptn : blank if the table isn't partitioned (stay tuned)
 C_summ : clustered index summary - can be NULL,

0, 1 or 1.1 : meaning not in any index but has stats,
not in a / the CI but in one or more NCIs, in the CI,
or is the leading column of the CI, respectively

 32 / 99

sp_rpm_summ_stats (cont)

t_name owner rowcnt col ptn C_summ N_summ Edit moddate pos_elap req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- -------- ------
Country dbo 23 cancelled 0 1 2017.09.27 12:25:00 00:00:00 20 1 20 0
Country dbo 23 created 0 1.1 2017.09.27 12:25:00 00:00:00 20 2 20 0
Country dbo 23 id 1.1 0 2017.09.27 12:25:00 00:00:00 20 20 20 0
Item dbo 1458982 m_id 1 0 Y 2017.09.11 15:49:56 00:00:05 20 30 20 0
Item dbo 1458982 name 1 0 Y 2017.09.11 15:49:51 00:00:13 50* 158 20 0

 Explanation (cont)
 N_summ : non-clustered index summary – can be

NULL, 0, x or x.y : meaning not in any index but has
stats, not in any NCIs but in the CI, in 'x' NCIs, or in
'x' NCIs and is the first column in 'y' of them,
respectively

 a Y in Edit indicates that the stats have been
changed in some way after being created

 33 / 99

sp_rpm_summ_stats (cont)

t_name owner rowcnt col ptn C_summ N_summ Edit moddate pos_elap req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- -------- ------
Country dbo 23 cancelled 0 1 2017.09.27 12:25:00 00:00:00 20 1 20 0
Country dbo 23 created 0 1.1 2017.09.27 12:25:00 00:00:00 20 2 20 0
Country dbo 23 id 1.1 0 2017.09.27 12:25:00 00:00:00 20 20 20 0
Item dbo 1458982 m_id 1 0 Y 2017.09.11 15:49:56 00:00:05 20 30 20 0
Item dbo 1458982 name 1 0 Y 2017.09.11 15:49:51 00:00:13 50* 158 20 0

 Explanation (cont)
 moddate : this is not the time that the stats were

written to sysstatistics
● it is actually the time that all of the data finished

being read before being processed
● if there is a lot of data that needs sorting, it might

be quite a while after this point before the stats
are written to sysstatistics

 34 / 99

sp_rpm_summ_stats (cont)

t_name owner rowcnt col ptn C_summ N_summ Edit moddate pos_elap req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- -------- ------
Country dbo 23 cancelled 0 1 2017.09.27 12:25:00 00:00:00 20 1 20 0
Country dbo 23 created 0 1.1 2017.09.27 12:25:00 00:00:00 20 2 20 0
Country dbo 23 id 1.1 0 2017.09.27 12:25:00 00:00:00 20 20 20 0
Item dbo 1458982 m_id 1 0 Y 2017.09.11 15:49:56 00:00:05 20 30 20 0
Item dbo 1458982 name 1 0 Y 2017.09.11 15:49:51 00:00:13 50* 158 20 0

 Explanation (cont)
 pos_elap : consequently, this is only possibly how long

it took to generate the stats for this column using the
simple method

● it is calculated using datediff with this column's
moddate and the closest previous moddate

➢ use t instead of y if multiple connections did
"update index statistics <table>"

 35 / 99

sp_rpm_summ_stats (cont)

t_name owner rowcnt col ptn C_summ N_summ Edit moddate pos_elap req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- -------- ------
Country dbo 23 cancelled 0 1 2017.09.27 12:25:00 00:00:00 20 1 20 0
Country dbo 23 created 0 1.1 2017.09.27 12:25:00 00:00:00 20 2 20 0
Country dbo 23 id 1.1 0 2017.09.27 12:25:00 00:00:00 20 20 20 0
Item dbo 1458982 m_id 1 0 Y 2017.09.11 15:49:56 00:00:05 20 30 20 0
Item dbo 1458982 name 1 0 Y 2017.09.11 15:49:51 00:00:13 50* 158 20 0

 Explanation (cont)
 An * after the req_step, tune_fac and / or samp_p

value indicates that the value is sticky (but only in
ASE 15.7 ESD#2 or greater)

 36 / 99

sp_rpm_summ_stats (cont)

 Analysis
 it is not difficult in this short set of output to spot

that the stats for the Item table were last updated
several weeks ago on 11th Sep not 27th Sep (possibly
by optdiag, but stay tuned)

sp_rpm_summ_stats @serial_us = y

t_name owner rowcnt col ptn C_summ N_summ Edit moddate pos_elap req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- -------- ------
Country dbo 23 cancelled 0 1 2017.09.27 12:25:00 00:00:00 20 1 20 0

SNIP
Customer dbo 142182 updated 0 1.1 2017.09.27 12:25:23 00:00:01 20 20 20 0
Item dbo 1458982 created 0 1.1 Y 2017.09.11 15:49:37 NULL 20 20 20 0
Item dbo 1458982 id 1.1 0 Y 2017.09.11 15:49:38 00:00:01 20 20 20 0
Item dbo 1458982 l_id 1 0 Y 2017.09.11 15:50:04 00:00:04 20 25 20 0
Item dbo 1458982 m_id 1 0 Y 2017.09.11 15:49:56 00:00:05 20 30 20 0
Item dbo 1458982 name 1 0 Y 2017.09.11 15:49:51 00:00:13 50* 158 20 0
Item dbo 1458982 s_id 1 0 Y 2017.09.11 15:50:00 00:00:04 20 30 20 0
Item dbo 1458982 u_id 1 0 Y 2017.09.11 15:50:09 00:00:05 20 12 20 0
Item dbo 1458982 updated 0 1 Y 2017.09.11 15:50:12 00:00:03 20 20 20 0
Item dbo 1458982 when_cancelled 0 1 Y 2017.09.11 15:50:15 00:00:03 20 20 20 0
Location dbo 30 cancelled 0 1 2017.09.27 12:25:46 00:00:00 20 1 20 0

SNIP
(70 rows affected)
(return status = 0)

 37 / 99

sp_rpm_summ_stats (cont)

 Analysis (cont)
 to save having to search by eye, such stats can

easily be shown by specifying the date of the most
recent housekeeping window, as follows

sp_rpm_summ_stats @dt_before = "27 Sep 2017", @serial_us = y
t_name owner rowcnt col ptn C_summ N_summ Edit moddate pos_elap req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- -------- ------
Item dbo 1458982 created 0 1.1 Y 2017.09.11 15:49:37 NULL 20 20 20 0
Item dbo 1458982 id 1.1 0 Y 2017.09.11 15:49:38 00:00:01 20 20 20 0
Item dbo 1458982 l_id 1 0 Y 2017.09.11 15:50:04 00:00:04 20 25 20 0
Item dbo 1458982 m_id 1 0 Y 2017.09.11 15:49:56 00:00:05 20 30 20 0
Item dbo 1458982 name 1 0 Y 2017.09.11 15:49:51 00:00:13 50* 158 20 0
Item dbo 1458982 s_id 1 0 Y 2017.09.11 15:50:00 00:00:04 20 30 20 0
Item dbo 1458982 u_id 1 0 Y 2017.09.11 15:50:09 00:00:05 20 12 20 0
Item dbo 1458982 updated 0 1 Y 2017.09.11 15:50:12 00:00:03 20 20 20 0
Item dbo 1458982 when_cancelled 0 1 Y 2017.09.11 15:50:15 00:00:03 20 20 20 0
(9 rows affected)
(return status = 0)

 38 / 99

sp_rpm_summ_stats (cont)

 Analysis (cont)
 what if only 'large tables' are of interest, sorted

by stats update date and time with the most
recent first? (no pos_elap column this time)

sp_rpm_summ_stats @min_rows = 100, @sort = -9
t_name owner rowcnt col ptn C_summ N_summ Edit moddate req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- ------
Customer dbo 142182 created 0 1.1 2017.09.27 12:25:25 20 20 20 0
Customer dbo 142182 id 1.1 2 2017.09.27 12:25:25 20 20 20 0
Customer dbo 142182 updated 0 1.1 2017.09.27 12:25:23 20 20 20 0
Customer dbo 142182 cancelled 0 1.1 2017.09.27 12:25:22 20 20 20 0
Customer dbo 142182 name 0 1.1 2017.09.27 12:25:17 20 22 20 0
Customer dbo 142182 c_id 0 1.1 2017.09.27 12:25:15 20 46 20 0
Customer dbo 142182 post_code 0 1.1 2017.09.27 12:25:12 20 50 20 0
Item dbo 1458982 when_cancelled 0 1 Y 2017.09.11 15:50:15 20 20 20 0
Item dbo 1458982 updated 0 1 Y 2017.09.11 15:50:12 20 20 20 0
Item dbo 1458982 u_id 1 0 Y 2017.09.11 15:50:09 20 12 20 0
Item dbo 1458982 l_id 1 0 Y 2017.09.11 15:50:04 20 25 20 0
Item dbo 1458982 s_id 1 0 Y 2017.09.11 15:50:00 20 30 20 0
Item dbo 1458982 m_id 1 0 Y 2017.09.11 15:49:56 20 30 20 0
Item dbo 1458982 name 1 0 Y 2017.09.11 15:49:51 50* 158 20 0
Item dbo 1458982 id 1.1 0 Y 2017.09.11 15:49:38 20 20 20 0
Item dbo 1458982 created 0 1.1 Y 2017.09.11 15:49:37 20 20 20 0
(16 rows affected)
(return status = 0)

 39 / 99

sp_rpm_summ_stats (cont)

 Analysis (cont)
 a partitioned table's full summary for columns
that start with a "v" (look at the rowcnt values)

sp_rpm_summ_stats all_types_part, "v%"
t_name owner rowcnt col ptn C_summ N_summ Edit moddate req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- ------
all_types_part dbo 4 v1 0 2.1 2017.08.30 11:36:33 20 8 20 0
all_types_part dbo 4 v2 0 1 2017.08.30 11:36:32 20 4 0 0
all_types_part dbo 1 v2 fir_ep 0 1 2017.08.30 11:36:32 20 1 20 0
all_types_part dbo 2 v2 thi_ep 0 1 2017.08.30 11:36:32 20 2 20 0
all_types_part dbo 1 v2 ten_ep 0 1 2017.08.30 11:36:32 20 2 20 0
all_types_part dbo 4 vb1 NULL NULL 2017.08.30 11:36:33 20 8 0 0
all_types_part dbo 1 vb1 fir_ep NULL NULL 2017.08.30 11:36:32 20 2 20 0
all_types_part dbo 2 vb1 thi_ep NULL NULL 2017.08.30 11:36:32 20 4 20 0
all_types_part dbo 1 vb1 ten_ep NULL NULL 2017.08.30 11:36:33 20 2 20 0
all_types_part dbo 4 vb2 NULL NULL 2017.08.30 11:36:33 20 4 0 0
all_types_part dbo 1 vb2 fir_ep NULL NULL 2017.08.30 11:36:32 20 1 20 0
all_types_part dbo 2 vb2 thi_ep NULL NULL 2017.08.30 11:36:32 20 2 20 0
all_types_part dbo 1 vb2 ten_ep NULL NULL 2017.08.30 11:36:33 20 2 20 0
(13 rows affected)
(return status = 0)

● ptn contains the name of the partitions with
data (the table has 10 partitions in total)

 40 / 99

sp_rpm_summ_stats (cont)

 Analysis (cont)
 the same criteria but with a small summary of a

partitioned table's information
sp_rpm_summ_stats all_types_part, "v%", @of_part = E
t_name owner rowcnt col ptn C_summ N_summ Edit moddate req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- ------
all_types_part dbo 4 v1 0 2.1 2017.08.30 11:36:33 20 8 20 0
all_types_part dbo 4 v2 3 0 1 2017.08.30 11:36:32 20 4 0 0
all_types_part dbo 4 vb1 3 NULL NULL 2017.08.30 11:36:33 20 8 0 0
all_types_part dbo 4 vb2 3 NULL NULL 2017.08.30 11:36:33 20 4 0 0
(4 rows affected)
(return status = 0)

● rowcnt now contains the total for the table
● ptn now contains a count of the partitions

with data

 41 / 99

sp_rpm_summ_stats (cont)

 Analysis (cont)
 An extended small summary of a partitioned table's

summary, sorted by reverse column ID order
sp_rpm_summ_stats all_types_part, "v%", @of_part = EE, @serial_us = y, @sort = -99
t_name owner rowcnt col ptn C_summ N_summ Edit moddate pos_elap req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- -------- ------
all_types_part dbo 4 vb2 3:20/1/20/0 NULL NULL 2017.08.30 11:36:33 00:00:00 20 4 0 0
all_types_part dbo 4 vb1 3:20/2/20/0 NULL NULL 2017.08.30 11:36:33 00:00:00 20 8 0 0
all_types_part dbo 4 v2 3:20/1/20/0 0 1 2017.08.30 11:36:32 NULL 20 4 0 0
all_types_part dbo 4 v1 0 2.1 2017.08.30 11:36:33 00:00:00 20 8 20 0
(4 rows affected)
(return status = 0)

● ptn now contains a count of the partitions with
data, and the averages of the req_step, act_step,
tune_fac and samp_p values for those partitions

 42 / 99

Progress

 A bit about myself ✓
 How statistics might be generated ✓
 Tools for analysis ✓
 Customisation procedure
 Other ways of cheating
 Where to find the procedures

 43 / 99

Cheating With Statistics 1

 It is unlikely that every column in every table in
every database will need (or want) to have the
same number of steps, tuning factor or sampling

 Customised stats updating jobs could be written to
handle the different requirements for such
columns

 That could be a lot of extra work to set up and to
maintain properly

 44 / 99

Cheating With Statistics 1 (cont)

 Some tables may require some or all columns to
have their stats updated more often than during
the regular housekeeping window
 which could mean different scripts for different

days
 When a schema change occurs, stats updating

before any testing can be done could add a
considerable amount of time to the process

 45 / 99

Cheating With Statistics 1 (cont)

 I've written four procedures to assist with the
issues mentioned
 sp_rpm_custom_stats (made available as part of

the Q3 2006 ISUG article but updated for ASEs
15.5+)

 sp_rpm_copy_stats
 sp_rpm_shuffle_stats
 sp_rpm_append_stats

 46 / 99

sp_rpm_custom_stats

 It's first incarnation was written for ASE 12.0
 It allowed the requested steps for a column to be

changed from
 the server's default
 a value specified as part of a previous update stats

command
 or the value inherited when stats were held on a

single page in earlier versions
 Once changed, using "update [index] statistics"

would use that new requested step value without
need for further customisation (i.e. it was sticky)

 47 / 99

sp_rpm_custom_stats (cont)

 I built-in the ability to copy requested step settings
from a configuration table, or from an existing table
 useful for schema changes made as follows

● rename the existing table
● create a new version of the table
● populate the new version of the table (possibly

done at the same time as the creation)
● create the indexes
● update the statistics
● drop the renamed table if everything OK

 48 / 99

sp_rpm_custom_stats (cont)

 use the procedure at any point after creating the
new version of the table and before creating the
first index

sp_rename Item, Item_save
Object name has been changed.
Warning: Changing an object or column name could break existing stored procedures, cached statements or other
compiled objects.
(1 row affected)
(return status = 0)

select *, who_cancelled = convert (varchar (255), null) into Item from Item_save where 1 = 2
(0 rows affected)

sp_rpm_custom_stats Item, @action = "All", @sourcetable = Item_save
Column name (ID = 2) of table Item (ID = 937051343) in database T5 (ID = 10) does not have a formatid 100 row in
sysstatistics
Two rows for requested steps for column name (ID = 2) of table Item (ID = 937051343) inserted into sysstatistics
for database T5 (ID = 10), with value 50
(return status = 0)

sp_rpm_summ_stats Item
t_name owner rowcnt col ptn C_summ N_summ Edit moddate req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- ------
Item dbo 0 name NULL NULL 2017.09.27 18:26:33 50* 1 20 0
(1 row affected)
(return status = 0)

 49 / 99

sp_rpm_custom_stats (cont)

sp__optdiag Item, name, @elo = n
sp__optdiag/1.16.0.5/0/B/KJS_n_RPM/AnyPlat/AnyOS/16.0.x/Thu Sep 14 16:07:00 2017
Adaptive Server Enterprise/16.0 SP02 PL02/EBF 25319 SMP/P/X64/Windows Server/ase160sp02plx/0/64-bit/FBO/Sun Nov 22 05:16:54 2015

SNIP
Statistics for column: "name"
Column Number: 2
Last update of column statistics: Sep 27 2017 6:26:33:773PM

 Range cell density: 0.0000000000000000
 Total density: 1.0000000000000000
 Range selectivity: default used (0.33)
 In between selectivity: default used (0.25)
 Unique range values: default used (0.000000)
 Unique total values: default used (1.000000)
 Average column width: default used (255.00)
 Rows scanned: default used (null)
 Statistics version: 0

Histogram for column: "name"
Column datatype: varchar(255)
Requested step count: 50
Actual step count: 1
Sampling Percent: 0
Tuning Factor: 20
Out of range Histogram Adjustment is DEFAULT.
Sticky step count.

 Step Weight Value

 1 1.00000000 = null

No statistics for remaining columns: "created"
(default values used) "description"
 "id"

SNIP
 "when_cancelled"
 "who_cancelled"

Elapsed = 00:00:00:033
sp__optdiag succeeded.

 50 / 99

sp_rpm_custom_stats (cont)

 The procedure calls itself when copying settings, once
for each value that needs to be copied

sp_rpm_custom_stats Item, @action = "All", @sourcetable = Item_save
Column name (ID = 2) of table Item (ID = 969051457) in database T5 (ID = 10) does not have a formatid 100 row in
sysstatistics
Two rows for requested steps for column name (ID = 2) of table Item (ID = 969051457) inserted into sysstatistics for
database T5 (ID = 10), with value 50
Column when_cancelled (ID = 15) of table Item (ID = 969051457) in database T5 (ID = 10) does not have a formatid 100 row
in sysstatistics
Two rows for tuning factor for column when_cancelled (ID = 15) of table Item (ID = 969051457) inserted into
sysstatistics for database T5 (ID = 10), with value 30
Column id (ID = 1) of table Item (ID = 969051457) in database T5 (ID = 10) does not have a formatid 100 row in
sysstatistics
Two rows for sampling percentage for column id (ID = 1) of table Item (ID = 969051457) inserted into sysstatistics for
database T5 (ID = 10), with value 50
(return status = 0)

sp_rpm_summ_stats Item
t_name owner rowcnt col ptn C_summ N_summ Edit moddate req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- ------
Item dbo 0 id NULL NULL 2017.09.27 18:43:13 20 1 20 50*
Item dbo 0 name NULL NULL 2017.09.27 18:43:12 50* 1 20 0
Item dbo 0 when_cancelled NULL NULL 2017.09.27 18:43:13 20 1 30* 0
(3 rows affected)
(return status = 0)

 51 / 99

sp_rpm_custom_stats (cont)

 The single system procedure execution above is
equivalent to the following three executions, but no
knowledge of the current settings is required

sp_rpm_custom_stats Item, id, NULL, Sampling, "50"
Column id (ID = 1) of table Item (ID = 1001051571) in database T5 (ID = 10) does not have a formatid 100 row in sysstatistics
Two rows for sampling percentage for column id (ID = 1) of table Item (ID = 1001051571) inserted into sysstatistics for database T5 (ID =
10), with value 50
(return status = 0)

sp_rpm_custom_stats Item, name, NULL, ReqStep, "50"
Column name (ID = 2) of table Item (ID = 1001051571) in database T5 (ID = 10) does not have a formatid 100 row in sysstatistics
Two rows for requested steps for column name (ID = 2) of table Item (ID = 1001051571) inserted into sysstatistics for database T5 (ID =
10), with value 50
(return status = 0)

sp_rpm_custom_stats Item, when_cancelled, NULL, TuneFac, "30"
Column when_cancelled (ID = 15) of table Item (ID = 1001051571) in database T5 (ID = 10) does not have a formatid 100 row in sysstatistics
Two rows for tuning factor for column when_cancelled (ID = 15) of table Item (ID = 1001051571) inserted into sysstatistics for database T5
(ID = 10), with value 30
(return status = 0)

sp_rpm_summ_stats Item
t_name owner rowcnt col ptn C_summ N_summ Edit moddate req_step act_step tune_fac samp_p
------ ----- ------ --- --- ------ ------ ---- ------- -------- -------- -------- ------
Item dbo 0 id NULL NULL 2017.09.27 18:48:04 20 1 20 50*
Item dbo 0 name NULL NULL 2017.09.27 18:48:39 50* 1 20 0
Item dbo 0 when_cancelled NULL NULL 2017.09.27 18:48:59 20 1 30* 0
(3 rows affected)
(return status = 0)

 52 / 99

sp_rpm_custom_stats (cont)

 As well as the settings seen above, it can also be
used to change Hashing, RangeAbsolute,
RangeFactor, TotalAbsolute or TotalFactor

 ReqStep, TuneFac, Sampling and Hashing make
changes directly to sysstatistics

 53 / 99

sp_rpm_custom_stats (cont)

 RangeAbsolute, RangeFactor, TotalAbsolute and
TotalFactor use sp_modifystats to make changes and
there must be existing statistics to change
 changing any of them marks the column as having

edited statistics
 Only ASE 15.7 ESD#2+ allows all of the settings above

to be changed
 earlier versions cannot change TuneFac, Sampling

or Hashing

 54 / 99

sp_rpm_custom_stats (cont)

 The shortcoming of this system procedure is that
statistics have to be updated after the settings have
been customised
 but not after changing RangeAbsolute,

RangeFactor, TotalAbsolute or TotalFactor
 However, it allows for a single stats updating script to

be used, with no customisation needed for different
tables and columns
 if columns do need different values, using this

procedure is likely easier than changing scripts

 55 / 99

sp_rpm_custom_stats (cont)

 56 / 99

sp_rpm_copy_stats

 This system procedure looks like it makes changes
to stats settings just like sp_rpm_custom_stats

 However, it copies the statistics themselves to be
for the new version of the table

 57 / 99

sp_rpm_copy_stats (cont)

 In the schema change scenario described above,
the new version of the table is populated from the
existing version of the table

 If the only new (or changed) data is in new
columns, then the existing statistics are still valid
for the new version of the table

 Consequently, the statistics on the existing data are
still valid in the new version of the table

 58 / 99

sp_rpm_copy_stats (cont)

 I've written this system procedure so that the new
version of the table does not need to have the
same layout as the existing version
 columns can move position
 columns can change names and / or datatype
 partitions can change names
 functional indexes can change position in the

index creation order

 59 / 99

sp_rpm_copy_stats (cont)

 Statistics would only have to be updated for
columns that are now in an index which weren't
previously in an index

 If there are no functional indexes, this procedure
can be executed before any indexes are created
 otherwise it has to be executed after the last

functional index is created
 Indexes can be created specifying "with 0 values",

which may be an additional saving in time

 60 / 99

sp_rpm_copy_stats (cont)

 See the two examples of using sp_rpm_copy_stats
on the web page (it's link will be given at the end of
the presentation) for the full proof that this process
works

 The next slide has the existing and new versions of
the table used in the second example of the proof
 apologies for the small font and how much is on

the next slide

 61 / 99

sp_rpm_copy_stats (cont)
create table Item
(id numeric (6) NOT NULL,
 name varchar (30) NOT NULL,
 m_id char (3) NOT NULL,
 s_id char (3) NOT NULL,
 l_id char (3) NOT NULL,
 u_id char (3) NOT NULL,
 quantity smallint NOT NULL,
 description varchar (50) NOT NULL,
 price smallmoney NOT NULL,

 stock smallint NOT NULL,

 created smalldatetime NOT NULL,
 updated smalldatetime NULL,
 cancelled smalldatetime NULL) lock allpages partition by range (id)
 (p01 values <= (109999),
 p02 values <= (119999),
 p03 values <= (129999),
 p04 values <= (139999),
 p05 values <= (149999),
 p06 values <= (159999),
 p07 values <= (169999),
 p08 values <= (179999),
 p09 values <= (189999),
 p10 values <= (199999),
 pma values <= (MAX))

/* Populated */

create clustered index Item_ci on Item (id, m_id, s_id, l_id, u_id, name)
 with statistics using 0 values

create index Item_nci_1 on Item (created, updated, cancelled)
 with statistics using 0 values

create index Item_fc_nci_1 on Item (price * stock)
 with statistics using 0 values local index fc_Part

exec sp_rpm_custom_stats Item, id, p01, ReqStep, "30"
exec sp_rpm_custom_stats Item, id, p02, ReqStep, "30"
exec sp_rpm_custom_stats Item, id, p03, ReqStep, "30"
exec sp_rpm_custom_stats Item, id, p04, ReqStep, "30"
exec sp_rpm_custom_stats Item, id, p05, ReqStep, "30"
exec sp_rpm_custom_stats Item, id, p06, ReqStep, "30"
exec sp_rpm_custom_stats Item, id, p08, ReqStep, "30"
exec sp_rpm_custom_stats Item, id, p09, ReqStep, "30"

update index statistics Item

delete statistics Item (created)

update statistics Item (created) with print_progress = 1

create table Item
(id bigint NOT NULL,
 name varchar (255) NOT NULL,
 m_id varchar (10) NOT NULL,
 s_id varchar (10) NOT NULL,
 l_id varchar (10) NOT NULL,
 u_id varchar (10) NOT NULL,
 unit_quantity int NOT NULL,
 description varchar (255) NOT NULL,
 price money NOT NULL,
 reserved int NULL,
 in_stock int NOT NULL,
 on_order int NULL,
 created datetime NOT NULL,
 updated datetime NULL,
 when_cancelled smalldatetime NULL) lock allpages partition by range (id)
 (p01 values <= (109999),
 p02 values <= (119999),
 p03 values <= (129999),
 p04 values <= (139999),
 p05 values <= (149999),
 p06 values <= (159999),
 p07 values <= (169999),
 p08 values <= (179999),
 p09 values <= (189999),
 p10 values <= (199999),
 pmax values <= (MAX))

/* Insert */

create clustered index Item_ci on Item (id, m_id, s_id, l_id, u_id, name)
 with statistics using 0 values

create index Item_nci_1 on Item (created, updated, when_cancelled)
 with statistics using 0 values

create index Item_nci_2 on Item (u_id, l_id, s_id, m_id, updated)
 with statistics using 0 values

create index Item_fc_nci_1 on Item (price * in_stock)
 with statistics using 0 values local index fc_Part

sp_rpm_copy_stats (cont)

 62 / 99

sp_rpm_copy_stats (cont)

 Creating the functional index on the populated new
version of the table re-creates the table, which
rebuilds the indexes, which creates stats for the
leading column of each of the indexes, even though
"using 0 values" is specified (a bug, methinks)

 63 / 99

sp_rpm_copy_stats (cont)

 Afterwards , the statistics can be copied :
@del_existing = Yes is used because of the above

sp_rpm_copy_stats Item_save, Item, @col_manual = "quantity = unit_quantity,
 sybfi3_1 = sybfi4_1", @part_manual = "pma = pmax", @del_existing = Yes, @debug = 1
 -- @col_manual does not need 'quantity = unit_quantity' because they don't have
statistics but it does need 'sybfi3_1 = sybfi4_1'; cancelled / when_cancelled was
matched on datatype because they were the only unmatched columns with the same datatype
(smalldatetime); the name of the maximum partition was changed, so that needs to be
specified in @part_manual

Modified the first formatid 102 cell of source table Item_save's 'created' column to be
the end of the minute / day when converting from smalldatetime to datetime for 10
partitions
Modified the first formatid 102 cell of source table Item_save's 'updated' column to be
the end of the minute / day when converting from smalldatetime to datetime for 10
partitions
Updated 194 source table temporary statistics formatid 102 and 100 rows for columns
changing datatypes between the two tables
Deleted 96 rows from and inserted 392 rows into sysstatistics for copying statistics
for source table Item_save and destination table Item
Elapsed = 00:00:01:606
(return status = 0)

 64 / 99

sp_rpm_copy_stats (cont)

 Doing "update index statistics Item" for the new
version of the table, with its database devices in
RAMDisk and an in-memory tempdb, took
00:00:32:980 (and much longer when the devices
were on HDD based devices)

 To get partitioned stats for the leading column of
the two NCIs (created and u_id), for better
optimiser processing, took a further 00:00:10:780

 Compared to 00:00:01:606 to copy them using
sp_rpm_copy_stats

 65 / 99

sp_rpm_copy_stats (cont)

 The two proofs on the web page show that ASE
doesn't care how the stats for a table got into
sysstatistics
 it will use what it has available for any new plan

creations
 So although this has a limited scope of use, it could

be very useful if used as part of the schema change
process

 66 / 99

sp_rpm_copy_stats (cont)

 sp_rpm_copy_stats is not a replacement for
updating stats for new versions of a table

 It is to allow testing of schema changes to start
sooner than might otherwise be the case if one or
more very large tables are being changed

 67 / 99

sp_rpm_copy_stats (cont)

 68 / 99

sp_rpm_copy_stats (cont)

 69 / 99

Cheating With Statistics 2

 My manager in a previous employment asked for
many years for Sybase / SAP to supply a mechanism
for what I am about to describe

 They never did so
 This is one example of someone else saying

"wouldn't it be great if …" and me devising and
creating a solution

 When I had a long period to work on my own
projects, I made this one of the issues I tackled

 70 / 99

sp_rpm_shuffle_stats

 This was written for a situation that most people are
never likely to encounter
 a live table is one that contains data for the

current date, and it has around the same number
of rows for every date

 a history table has the same layout as its
equivalent live table, but with one extra column
that contains the date that the live data relates to

 an archive table has the same layout as the
equivalent history table

 71 / 99

sp_rpm_shuffle_stats (cont)

 at the end of the business day, the live data is
copied to the relevant history table

 then data older than 'x' days is
● copied from the history table to relevant

archive table (if there is one)
● deleted from the history table

 then data older than 'y' days is
● deleted from the archive table (if there is one)

 72 / 99

sp_rpm_shuffle_stats (cont)

 The sizes of the live, and the history and archive (if
there is one) tables stay at around the same levels
every day, once the non-live(s) days are fully
populated

 After the copying and deleting is complete for a set
of tables, the history and archive tables have around
the same number of rows as they did before the
processing started but there are
 statistics for a date that is no longer in the tables
 no statistics for the newest date

 73 / 99

sp_rpm_shuffle_stats (cont)

 A live table can contain many thousands of rows
 maybe 10's or 100's of thousands of rows

 The history and archive tables will contain 'x' times
and ('y' – 'x') times many thousands of rows,
respectively
 with several columns in multiple indexes, stats

updating for these tables is time consuming
● even if just the date column has its stats

updated

 74 / 99

sp_rpm_shuffle_stats (cont)

 Having tables like these allows live data to be
accessed and changed throughout the day in a
moderately sized table
 that can have its statistics updated every day if

required
 Reporting using older data can occur without

impacting the accessibility of the live data

 75 / 99

sp_rpm_shuffle_stats (cont)

 All of the above live, history and archive table usage
was devised and implemented before tables could
be partitioned

 There are no plans to partition the history and
archive tables

 76 / 99

sp_rpm_shuffle_stats (cont)

 Statistics are only updated on the history and
archive tables once a week at the most
 other work (e.g. schema changes) during the

housekeeping window may impact on how much
time is available for updating statistics

 consequently, some history and / or archive
tables may not have their statistics updated for
several weeks

 77 / 99

sp_rpm_shuffle_stats (cont)

 As of ASE 15.7 ESD#2 onwards, 'out of range' can
be set on the date column

 However, as more dates are added, the
extrapolation that that allows becomes less
accurate

 sp_rpm_shuffle_stats was written to try and have
more accurate statistics throughout the working
week

 78 / 99

sp_rpm_shuffle_stats (cont)

 It requires that each date has sparse frequency
cells, with two entries per date (stay tuned)
 the first entry has < the date and a weight of

zero
 the second has = the date and the weight for the

date
 all dates have a similar non-zero weight

 79 / 99

sp_rpm_shuffle_stats (cont)

 There must be no rows in the table for the pair of
cells with the oldest date
 which are steps 1 and 2 in the histogram output

 There must be around the same number of rows
for the newly added date as there were for the
oldest date that were deleted
 i.e. the new date's weight must be very similar to

the oldest date's weight

 80 / 99

sp_rpm_shuffle_stats (cont)

 The weight for the oldest date is saved (which is the
value in c1 of the first formatid 104 row for the
date column)

 The pairs of cells are moved down one set for the
formatid 102 and 104 rows
 e.g. c2 c0 & c3 c1, c4 c2 & c5 c3 . . .→ → → →
 if there is more than one formatid 104 row (i.e.

more than 40 dates), c0 and c1 of the next row
become c78 and c79 of this row

 81 / 99

sp_rpm_shuffle_stats (cont)

 The pair of cells with the previous oldest date get
changed to have
 the current date's value (the new maximum

value)
 the weight saved in the first point above

 By cycling the first weight to be the last weight, the
total for the weights remains the same as it was
before
 which should be exactly one, or very close to it

 82 / 99

sp_rpm_shuffle_stats (cont)

 This only works for [small|big]datetime columns
 If a date column is used

 a set of dense frequency cells are generated if
all of the dates are contiguous

 a combination of dense and sparse frequency
cells are generated if there are any gaps in the
date sequence

 It is unlikely that I'll extend the functionality to be
able to cope with the above

 83 / 99

sp_rpm_shuffle_stats (cont)

 The table must be fully populated with all of the
requisite number of dates of data
 stay tuned to find out how to handle a table

used for holding a finite number of dates not yet
being fully populated for all dates, by using a
different way of cheating

 There can only be one new date's worth of data to
process per execution

 84 / 99

sp_rpm_shuffle_stats (cont)

 The procedure does not work against partitioned
tables
 a set of partitioned statistics contains a

summary set and a set for each partition with
data

 shuffling none, some or all of the sets of
statistics might break something, so I decided to
leave them alone for this (and the next)
procedure

 85 / 99

sp_rpm_shuffle_stats (cont)

 86 / 99

sp_rpm_append_stats

 If a history or archive table is not fully populated,
until the stats are next updated, then each new
date's worth of data will
 degrade the "out of range" extrapolation if that

is set
 cause larger and larger errors for the number of

rows estimated for dates with existing stats
● as the optimiser applies the weight to the row

count

 87 / 99

sp_rpm_append_stats (cont)

 sp_rpm_append_stats appends two sparse
frequency cells for the next date with data after the
set with the most recent date in the statistics
 it also massages all of the existing weights, and

other information about the column
● e.g. total density

 88 / 99

sp_rpm_append_stats (cont)

 If each set of data had exactly the same number of
rows, then each weight would be
 1 / 'number of dates'

 However, there will usually be a small percentage
difference in the number of rows for each date
 so the existing weights and the new weight have

to be massaged based upon this small
percentage difference

 89 / 99

sp_rpm_append_stats (cont)

 The current average weight (caw) is (1 / 'number of
dates')

 The new average weight (naw) is (1 / ('number of
dates' + 1))

 The weight difference factor (wdf) is (caw / naw)
 Each existing weight is massaged using

 ((weight – caw) / wdf) + naw
 Testing has shown that the resulting massaged

value is 'close' to what a new stats update generates
after the data for the new date is added

 90 / 99

sp_rpm_append_stats (cont)

 To calculate the weight for the new pair
 a running total of ((weight – caw) / wdf) is

calculated
 the new weight is (naw – final running total)

 The table can contain multiple sets of new dates'
data
 each execution of sp_rpm_append_stats will only

process the next date after the most recent date
with statistics

 91 / 99

sp_rpm_append_stats (cont)

 In a table with stats for 31 dates' data with around 510
rows per set of data
 a new date's data were inserted, with 516 rows
 sp_rpm_append_stats was executed

sp_rpm_append_stats B_HIST, dt, @max_diff_pct = 3.3, @debug = 1
Appended new stats value 'Mar 5 2017 12:00:00.000000AM' with weights
0x00000000 and 0.0312499646 for column dt in the table B_HIST
Each stored procedure and trigger that uses table 'B_HIST' will be
recompiled the next time it is executed.
Elapsed = 00:00:00:080
(return status = 0)

 92 / 99

sp_rpm_append_stats (cont)

● A higher maximum difference percentage of 3.3
than the default of 1.1 had to be specified due
to the low number of rows for each date

● the percentage difference ensures that the
existing weights are not too different from one
to the next

● the 32 dates had between 501 and 519 rows
● the largest row count difference between two

contiguous dates was 11

 93 / 99

sp_rpm_append_stats (cont)

 the massaged weight for the new date's pair was
0.03124996

 its weight after stats updating the 32 dates' data
was 0.03147109, a -0.708% difference

 94 / 99

sp_rpm_append_stats (cont)

 In a table with stats for 31 dates' data with around
510 rows per set of data
 24 new dates' of data were inserted, with around

510 rows each
 append_stats was executed 24 times
 the massaged weight for the 24th new date's pair

was 0.01818181
 its weight after stats updating the 55 dates' data

was 0.01830371, a -0.670% difference

 95 / 99

sp_rpm_append_stats (cont)

 In a situation where a new set of live, history and
possibly archive tables are needed, or the number
of dates' of data needs to be increased in the
history and / or archive tables
 and it isn't possible to update the stats for each

new date's data after being inserted
 then sp_rpm_append_stats will allow the

optimiser to make better estimates between
stats updating

 96 / 99

sp_rpm_append_stats (cont)

 97 / 99

Permissions

 The four cheating statistics system procedures can
be executed by
 a user with sa_role
 the owner of the database that the table is in
 the owner of the table
 a user with "update statistics" permission

● permission granted either directly or via a
role (down to four levels of role nesting)

 98 / 99

Where To Find The Procedures

 I have a web page hanging off of the side of the
web site I administer for the Lumphanan
Community Recreation Association (LCRA)
 we host the first 10 KM run of the year in

Scotland, held on the 2nd of January every year
(weather and pandemics permitting)

 it is called "The Lumphanan Detox 10K"
 please get in touch if your firm would like to help

sponsor a race
https://www.lumphanan.com/ase

 99 / 99

Summary

 A bit about myself ✓
 How statistics might be generated ✓
 Tools for analysis ✓
 Customisation procedure ✓
 Other ways of cheating ✓
 Where to find the procedures ✓

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

